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DualDn: Dual-domain Denoising via
Differentiable ISP

Supplementary Material

1 Experiment Details

Here we provide additional results for denoising synthetic images, real-captured
images, and the DND benchmark. Additionally, our project website (https:
//openimaginglab.github.io/DualDn/) offers clear and detailed comparisons.

1.1 Results for Synthetic Datasets

As described in the main text, we trained 3 different backbones using the same
training strategy, with random noise level K ∼ [0.0002, 0.02] and amplification
ratio α ∼ [0, 1] on a synthetic dataset. In Tab. 1, we present a comprehensive
comparison table testing different K and α. Our DualDn consistently outper-
forms single-domain methods across all test cases. Moreover, we provide addi-
tional visualization denoising results of synthetic datasets in Fig. 7 and Fig. 8.

Table 1: Full comparison of denoising performance. Dual-domain denoising outper-
forms single-domain methods in every case of noise levels K and amplification ratio α.

K = 0.0002 K = 0.002 K = 0.02

Backbones SwinIR MIRNet-v2 Restormer SwinIR MIRNet-v2 Restormer SwinIR MIRNet-v2 Restormer

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Raw denoising 36.77 0.938 40.89 0.972 41.44 0.972 33.80 0.873 36.76 0.942 36.98 0.941 26.96 0.595 31.47 0.865 32.08 0.873

α = 0.2 sRGB denoising 36.11 0.928 36.12 0.945 42.42 0.975 32.71 0.820 34.78 0.921 37.72 0.944 26.32 0.513 30.20 0.806 33.09 0.890
Ours 37.30 0.943 41.07 0.972 42.86 0.977 34.59 0.891 37.21 0.944 38.60 0.953 28.95 0.709 32.35 0.883 33.98 0.906

Raw denoising 35.53 0.928 39.33 0.964 39.71 0.962 32.49 0.853 35.28 0.929 35.45 0.927 25.84 0.576 30.03 0.838 30.65 0.850
α = 0.5 sRGB denoising 35.64 0.927 35.03 0.935 40.92 0.968 31.71 0.808 33.61 0.905 36.48 0.935 25.41 0.519 28.88 0.777 31.88 0.872

Ours 36.29 0.936 39.62 0.964 41.32 0.970 33.62 0.884 35.81 0.931 37.18 0.941 27.89 0.694 31.05 0.862 32.64 0.888

Raw denoising 34.39 0.919 38.00 0.956 38.24 0.953 31.30 0.839 34.04 0.916 34.16 0.914 24.82 0.584 28.80 0.817 29.44 0.831
α = 0.8 sRGB denoising 34.84 0.923 34.06 0.925 39.59 0.960 30.52 0.793 32.57 0.891 35.30 0.923 23.95 0.500 27.60 0.754 30.62 0.848

Ours 35.05 0.926 38.36 0.956 39.97 0.962 32.47 0.870 34.63 0.919 35.94 0.930 26.53 0.664 29.93 0.845 31.48 0.872

1.2 Results for Smartphone Datasets

In the main text (Sec. 4.2), we present visual comparisons demonstrating that
DualDn achieves higher-quality denoising results compared to the camera ISP.
To fairly evaluate the generalization capability of DualDn, we conducted a quan-
titative comparison with the camera denoising results through a user study. We
recruited 50 participants to compare 29 results. For each result, participants
were asked to respond to three questions shown in Fig. 1. The distribution of

https://openimaginglab.github.io/DualDn/
https://openimaginglab.github.io/DualDn/
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preferences across methods indicates that our results are more favored by human
subjects. Specifically, our method (represented by red bars) received significantly
more choices for less noise, more details, and better visual perception compared
to the camera ISP (represented by blue bars).
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Fig. 1: Distributions for the three questions in the smartphone dataset’s user study.

1.3 Results for DND Benchmark

In the main text (Sec. 4.1), we demonstrated that DualDn generally outperforms
the intermediate Raw output. However, due to the zipper pattern in the DND’s
ground truth caused by its overly simplified demosaicing process, our final sRGB
result’s PSNR/SSIM scores increased only slightly. As shown in Fig. 3, the left
column displays the intermediate raw output of DualDn evaluated with DND’s
black-box ISP, while the right column shows the DualDn’s output with our ISP.
The left column achieves better metrics in Fig. 3 since the zipper pattern around
the image edges produced by DND’s ISP is more consistent with its ground truth.

However, this introduces a dilemma for fully testing DualDn on the DND
benchmark: the DND ISP is not open-source, so we cannot use it for image
processing, and training DualDn with a simplified demosaicing algorithm results
in obvious denoising artifacts due to the presence of zipper patterns, as we will
verify in Sec. 2.2. Nevertheless, we recruited 20 participants to conduct a Mean
Opinion Score (MOS) experiment with image quality ratings ranging from 1
(Bad) to 5 (Good). Each participant was asked to compare 20 denoising results
generated by CycleISP, Restormer, and DualDn. The average score in Fig. 2 in-
dicates that people perceive our DualDn to have better visual quality. Moreover,
we provide additional visualization results in Fig. 9.
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Fig. 2: MOS experiment with visual quality comparison in the DND Benchmark.
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DualDn with DND ISP DualDn with our ISP

35.38 / 0.9478
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Fig. 3: Test images with slight noise on DND benchmark with different ISPs.
As can be seen in the zoom-in patches, DND ISP produces obvious zipper patterns
around image edges. Although two results are visually similar, the evaluation matrixs
(PSNR/SSIM) drop a lot due to DND ISP’s over-simplified demosaicing.

2 Method Details

2.1 Noise Map Fusion Block

In our work, we present a Noise map Fusion Block (NFB) to effectively fuse the
noise map and input feature, aiming to improve dual-domain denoising perfor-
mance. As mentioned in the main text (Sec. 3.3), we adopt both raw and sRGB
noise maps, so the NFB needs to be fit for both domains that denoising applies.
We use a switch mechanism (shown in the bottom left of Fig. 4) to change the
formation process of noise maps in different domains, and it switches to the route
with ISP when applied in the sRGB domain.

Specifically, as shown in Fig. 4, given the Input ∈ RH×W×N , where N equals
4 or 3 (packed raw or sRGB images), we concatenate it with the corresponding
noise map after pixel-wise and depth-wise convolutions. Then, we expand the
number of channels from N to C for denoising. Finally, a skip connection is
adopted as residual learning for the final Output. As network architecture is a
vital element in feature fusion, we also conduct an experiment on different fusion
methods adopted in previous studies to find the optimal fusion mechanism. As
shown in Tab. 2, our DualDn can effectively fuse noise maps under the dual-
domain denoising network architecture.
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Fig. 4: Detailed architecture of noise map fusion block.

Table 2: Testing different fusion methods at different noise levels K.

Method: Gated [2] SKFF [7] Attention [6] Ours

Noise Level PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
K=0.002 38.48 0.952 38.55 0.953 38.57 0.953 38.61 0.953
K=0.02 33.82 0.903 33.88 0.905 33.90 0.905 33.98 0.906

2.2 Differentiable AHD Demosaicing

ISPs adopt demosaicing algorithms to interpolate information from the raw im-
age space to the sRGB image space. Simple demosaicing algorithms, such as
nearest or bilinear interpolation, produce zipper patterns around image edges
even in the absence of noise, as shown in Fig. 5a. Furthermore, if a simple de-
mosaicing algorithm is adopted, high-frequency noise in the raw image will be
entangled by the demosaicing process and amplified by subsequent ISP modules,
resulting in images with more severe noise. To verify this, we trained DualDn
with different demosaicing algorithms and tested the final results. As shown
in Tab. 3, simple demosaicing algorithms can “distract” dual-domain denoisers,
causing them to misinterpret the zipper pattern as extra noise and thereby re-
ducing denoising performance to some extent.

To that end, we adopt the adaptive homogeneity-directed (AHD) demosaic-
ing algorithm [3] and modify it into a differentiable one. Given the original raw
image, we extract its corresponding R-G-B channels using the Bayer pattern
and use the AHD algorithm for interpolation to obtain the final raw-RGB im-
age. Fig. 5b explains the overall scheme for our AHD algorithm, and Algorithm 1
shows the details. As a result, our simplified AHD algorithm reduces the zipper
pattern and improves the performance of DualDn, as shown in Fig. 5a and Tab. 3.

Lastly, we test our ISP’s robustness with a widely-used one [1]. Using the
well-known RawPy [4] as a reference, on 50 clean raw images, our ISP achieves
an average PSNR of 41.7dB with better visual quality, as shown in Fig. 6.

Table 3: Testing DualDn (with various demosaicing algorithms) under different K.

Nearest Bilinear Malvar [5] Ours

Noise Level PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓
K=0.002 39.16 0.947 6.969 40.02 0.957 7.384 40.49 0.962 6.148 41.24 0.968 6.047
K=0.02 34.63 0.895 7.239 35.18 0.905 7.441 35.57 0.919 7.076 36.09 0.929 7.009
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(b) The overall scheme of AHD demosaicing.

Fig. 5: Explanations of our AHD demosaicing and compare it with other algorithms.
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Fig. 6: Compare DualDn ISP with other ISPs on clean raw images.

Algorithm 1: Our AHD demosaicing
Input : original raw r and channels R, G, B
Output: demosaic channels R

′
, G

′
, B

′

1 Initialization: bilinear-interpolated R0, G0, B0;

2 Calculate row/column direction interpolation:
3 begin
4 Grow = conv2d(r, f), Gcol = conv2d(r, f

T );
5 Rrow = Blur(R0 −G0) +Grow, Rcol = Blur(R0 −G0) +Gcol;
6 Brow = Blur(B0 −G0) +Grow, Bcol = Blur(B0 −G0) +Gcol;
7 end
8 where, f = [−1, 2, 2, 2,−1]/4, Blur() is a 3× 3 Gaussian blur kernel;

9 Convert (R0, G0, B0) to Lab color space (L, a, b);

10 Calculate row/column gradients δrow, δcol:
11 for i = L, a, b do
12 δrow = δrow + conv2d(i, h1) + conv2d(i, h2);
13 δcol = δcol + conv2d(i, h

T
1 ) + conv2d(i, h

T
2 );

14 end
15 where, h1 = [1, 2,−3, 0, 0], h2 = [0, 0,−3, 2, 1];

16 Select the row/column interpolation with smaller δ:
17 for j = R,G,B do
18 if δrow < δcol then
19 j

′
= jrow;

20 else
21 j

′
= jcol;

22 end
23 end
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Fig. 7: Additional qualitative comparison on synthetic datasets.
(under amplification ratio α = 0, various noise level K)
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Fig. 8: Additional qualitative comparison on synthetic datasets.
(under amplification ratio α = 1, various noise level K)
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Fig. 9: Additional qualitative comparison on DND benchmark.


